Exercise 3.3.12

(a) Graphically show that the even terms (n even) of the Fourier sine series of any function on $0 \leq x \leq L$ are odd (antisymmetric) around $x=L / 2$.
(b) Consider a function $f(x)$ that is odd around $x=L / 2$. Show that the odd coefficients (n odd) of the Fourier sine series of $f(x)$ on $0 \leq x \leq L$ are zero.

Solution

The Fourier sine series expansion of $f(x)$, a piecewise smooth function defined on $0 \leq x \leq L$, is given by

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

where

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Part (a)

Consider the even terms in the series: $n=2 k$.

$$
B_{2 k} \sin \frac{2 k \pi x}{L}
$$

The aim is to show that this function is odd with respect to $x=L / 2$, so replace x with $x+L / 2$ to translate the sine curve $L / 2$ units to the left.

$$
\begin{gathered}
B_{2 k} \sin \left[\frac{2 k \pi}{L}\left(x+\frac{L}{2}\right)\right] \\
B_{2 k} \sin \left(\frac{2 k \pi x}{L}+k \pi\right) \\
B_{2 k}\left(\sin \frac{2 k \pi x}{L} \cos k \pi+\cos \frac{2 k \pi x}{L} \sin k \pi\right) \\
B_{2 k}\left[(-1)^{k} \sin \frac{2 k \pi x}{L}+(0) \cos \frac{2 k \pi x}{L}\right] \\
B_{2 k}(-1)^{k} \sin \frac{2 k \pi x}{L}
\end{gathered}
$$

Swapping x with $-x$ results in the same expression with a minus sign, indicating that this is an odd function.

$$
B_{2 k}(-1)^{k} \sin \frac{2 k \pi(-x)}{L} \quad \rightarrow \quad-B_{2 k}(-1)^{k} \sin \frac{2 k \pi x}{L}
$$

Therefore, the even terms in the Fourier sine series expansion are odd with respect to $x=L / 2$.

Part (b)

As mentioned before, the Fourier sine coefficients are given by

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x .
$$

Replace x with $x+L / 2$ to translate everything to the left by $L / 2$ units.

$$
B_{n}=\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right] d x
$$

Consider the odd coefficients by setting $n=2 k+1$.

$$
\begin{aligned}
B_{2 k+1} & =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \left[\frac{(2 k+1) \pi}{L}\left(x+\frac{L}{2}\right)\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \left[\frac{(2 k+1) \pi x}{L}+\frac{(2 k+1) \pi}{2}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left[\sin \frac{(2 k+1) \pi x}{L} \cos \frac{(2 k+1) \pi}{2}+\cos \frac{(2 k+1) \pi x}{L} \sin \frac{(2 k+1) \pi}{2}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left[(0) \sin \frac{(2 k+1) \pi x}{L}+(-1)^{k} \cos \frac{(2 k+1) \pi x}{L}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)(-1)^{k} \cos \frac{(2 k+1) \pi x}{L} d x \\
& =\frac{2(-1)^{k}}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \frac{(2 k+1) \pi x}{L} d x
\end{aligned}
$$

Note that f is odd, and cosine is even. The product of an odd function and an even function is odd, and the integral of an odd function over a symmetric interval is zero.

$$
\begin{aligned}
B_{2 k+1} & =\frac{2(-1)^{k}}{L}(0) \\
& =0
\end{aligned}
$$

Therefore, the odd coefficients in the Fourier sine series expansion of $f(x)$ are zero if f is odd with respect to $x=L / 2$.

